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Abstract—This paper presents a more systematic formulation of the 

weighted Taylor series, resulting in a more accurate determination of 

the weighting coefficient. The weighted Taylor series is derived by 

truncating the Taylor series to the first order and assigning weighting 

coefficients to the first-order terms, which reflect the contribution of 

higher-order terms. The resulting weighted Taylor series is applied to 

the analysis of wave constant equations in deep water, including 

wavelength and wave period, which are primarily governed by the 

Kinematic Free Surface Boundary Condition. The input for these wave 

constant equations is the wave amplitude. Using these wave constant 

equations, a shoaling-breaking model is developed, accounting for 

wave energy loss. The lost wave energy is then utilized to derive the 

radiation current equation, which subsequently leads to the formulation 

of the littoral current equation. 

 

I. INTRODUCTION 

The fundamental equations of hydrodynamics are often 

formulated using truncated Taylor series, which retain only 

the first-order terms. The justification for truncation lies in 

the assumption that, for sufficiently small intervals in both 

time and space, the contributions of second-order and 

higher-order terms become negligible. However, this 

reasoning is not entirely accurate. As the interval size 

decreases, the value of the first-order term also diminishes, 

rendering the higher-order terms relatively significant. 

Consequently, neglecting these terms can lead to a loss of 

important characteristics of the underlying function, as 

higher-order differentials carry specific physical meanings. 

For instance, second-order differentials are associated with 

identifying maxima or minima, while third-order 

differentials convey additional information about the 

curvature and behavior of the function. Excluding these 

terms compromises the accuracy and completeness of the 

representation, as the first-order approximation alone is 

insufficient to capture the essential properties of the system. 

Despite this limitation, incorporating higher-order terms 

into the formulation of the basic equations of 

hydrodynamics poses considerable challenges, particularly 

in terms of complexity and computational feasibility. To 

address this issue, it is necessary to develop a modified 

truncated Taylor series that retains the influence of higher-

order terms indirectly. This research introduces such a 

formulation, termed the weighted Taylor series, in which 

the effects of higher-order terms are embedded into the first-

order term through the use of weighting coefficients. 

The accurate determination of these weighting coefficients 

requires careful consideration of the interval size at which 

the Taylor series can be truncated to a first-order 

approximation. Consequently, this research also formulates 

an appropriate interval size for numerical modeling, 

ensuring that the weighted Taylor series captures the 

essential dynamics of the system while remaining 

computationally efficient. 

Numerical methods, such as the Finite Difference Method 

(FDM) and the Finite Element Method (FEM), are 
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commonly used to solve the governing equations of  

hydrodynamics. These methods rely on small interval sizes, 

which must align with the formulation of the basic 

equations. By integrating the weighted Taylor series and its 

associated interval size, this research aims to enhance the 

accuracy and reliability of numerical hydrodynamic 

models. 

An application of these principles can be seen in the 

research of wave energy dissipation in coastal waters, a 

phenomenon first described by Longuet-Higgins (1970) as 

radiation stress. From the radiation stress equations, the 

longshore current equations were subsequently derived. 

Understanding longshore currents is crucial, as these 

currents play a significant role in coastal erosion and 

sedimentation processes.  

 

II. THE FORMULATION OF WEIGHTED 

TAYLOR SERIES 2-D 

The following is Taylor series for a function with two 

variables 𝑓 = 𝑓(𝑥, 𝑡), (Arden, Bruce W. and Astill Kenneth 

N. ,1970) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

               +
𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥 2
+ ⋯  (1) 

𝑥 is the horizontal axis and 𝑡 is time. The simplified formula 

is written as follows.  

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝑠1 + 𝑠2 + 𝑠3 

                                                             … … + 𝑠𝑛     … (2)  

Where, 

𝑠1 = 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

𝑠2 =
𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2
 

𝑠3 =
𝛿𝑡3

6

Ƌ3𝑓

Ƌ𝑡3
+

𝛿𝑡2

2
𝛿𝑥

Ƌ3𝑓

Ƌ𝑡2Ƌ𝑥
+ 𝛿𝑡

𝛿𝑥2

2

Ƌ3𝑓

𝛿𝑡Ƌ𝑥2
 

                                                                          +
𝛿𝑥3

6

Ƌ3𝑓

Ƌ𝑥3
 

Etc. 

Odd differential terms of higher order are collected, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝑠1 + 𝑠2 + 𝑠4 + 𝑠6 …. 

                                                              + ∑ 𝑠𝑗

2𝑛+1

𝑗=2𝑖+1

 … . (3) 

Where 𝑖 = 1 to 𝑛. For, 

∑ 𝑠𝑗

2𝑛+1

𝑗=2𝑖+1

= 𝜇2𝑠1                                               … … . . (4) 

The term 𝜇2, known as the contribution coefficient, is a 

small number. Substituting this into (3) yields: 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + (1 + 𝜇2)𝑠1 + 𝑠2 

                                    +𝑠4 + 𝑠6 ….                             (5) 

Expansion to point (𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡), 

𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) = 𝑓(𝑥, 𝑡) − (1 + 𝜇2)𝑠1 + 𝑠2 + 𝑠4 + 𝑠6 

                                                                      ……(6) 

Equation (5) subtracted by equation (6), 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) = 2(1 + 𝜇2)𝑠1 

𝑠1 is broken down into, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) = 

                            2(1 + 𝜇2)𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 2(1 + 𝜇2)𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

This equation represents the total change in the function's 

value as it transitions from  (𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) ke (𝑥 +

𝛿𝑥, 𝑡 + 𝛿𝑡). Subsequently, the equation is normalized by 

dividing it by 2𝛿𝑥, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡)

2𝛿𝑥
= 

(1 + 𝜇2)
Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇2)

Ƌ𝑓

Ƌ𝑥
 

At small  𝛿𝑥 and 𝛿𝑡, this equation represents the total 

change per unit length, specifically: 

𝐷𝑓

𝑑𝑥
= (1 + 𝜇2)

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇2)

Ƌ𝑓

Ƌ𝑥
…           … (7) 

This equation includes higher-order terms, comprising both 

even and odd differentials. The Taylor series expansion is 

truncated to the first-order terms only. 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

Ƌ𝑓

Ƌ𝑥
 in the 3rd term on the right side is substituted with (7) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                              +𝛿𝑥 ((1 + 𝜇2)
𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇2)

Ƌ𝑓

Ƌ𝑥
) 

Similar terms are grouped, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + (2 + 𝜇2)𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                                        +(1 + 𝜇2)𝛿𝑥
Ƌ𝑓

Ƌ𝑥
 

And later are defined as,  

𝛾𝑡,2 = 2 + 𝜇2                                                      … … (8) 

𝛾𝑥,2 = 1 +  𝜇2                                                     . . . . . (9) 

 

Hence, the final equation is, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                            +𝛾𝑥,2𝛿𝑥
Ƌ𝑓

Ƌ𝑥
           … . . (10) 
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This equation represents a weighted Taylor series expansion 

for the function 𝑓 = 𝑓(𝑥, 𝑡) and weighting coefficient 𝛾𝑡,2 

and 𝛾𝑥,2. 

 

a. Calculating the contributing coefficient 𝜇2. 

Equation (4) can be reformulated to express the contribution 

coefficient 𝜇2, that is 

𝜇2 =
∑ 𝑠𝑗

2𝑛+1
𝑗=2𝑖+1

𝑠1

 

For very small interval between 𝛿𝑡 and 𝛿𝑥, thus 

(𝑠5 + 𝑠7 + 𝑠9+. . ) ≪ 𝑠3. Therefore, the final equation can 

be approached by, 

𝜇2 =
𝑠3

𝑠1

 

𝑠3 and 𝑠1 are broken down into, 

𝜇2 = 

𝛿𝑡3

6
Ƌ3𝑓
Ƌ𝑡3 +

𝛿𝑡2

2
𝛿𝑥

Ƌ3𝑓
Ƌ𝑡2Ƌ𝑥

+ 𝛿𝑡
𝛿𝑥2

2
Ƌ3𝑓

𝛿𝑡Ƌ𝑥2 +
𝛿𝑥3

6
Ƌ3𝑓
Ƌ𝑥3

(𝛿𝑡
Ƌ𝑓
Ƌ𝑡

+ 𝛿𝑥
Ƌ𝑓
Ƌ𝑥

)
 

                                                                      …(11) 

The sinusoidal water wave equation can apply this formula, 

𝑓(𝑥, 𝑡) = cos 𝜎𝑡 cos 𝑘𝑥 

Where 𝜎 =
2𝜋

𝑇
 and 𝑘 =

2𝜋

𝐿
 where 𝑇 is wave period and 𝐿 is 

wavelength. 

The substitution of 𝑓(𝑥, 𝑡) to (11) within cos 𝜎𝑡 = sin 𝜎𝑡 

and cos 𝑘𝑥 = sin 𝑘𝑥 is as follows. 

𝜇2 =

𝛿𝑡3

6
𝜎3 +

𝛿𝑡2

2
𝛿𝑥 𝑘 𝜎2 + 𝛿𝑡

𝛿𝑥2

2
𝜎𝑘2 +

𝛿𝑥3

6
𝑘3

(−𝛿𝑡𝜎 − 𝛿𝑥 𝑘 )
 

 

The substitution of 𝛿𝑡 = 𝜀𝑡𝑇, 𝜎 =
2𝜋

𝑇
, 𝛿𝑥 = 𝜀𝑥𝐿 and 𝑘 =

2𝜋

𝐿
, 

where 𝜀𝑡 is the interval coefficient of 𝑡 axis, while 𝜀𝑥 is the 

interval coefficient of 𝑥 horizontal axis, thus  

 

𝜇2 =

𝜀𝑡
3

6
(2𝜋)2 +

𝜀𝑡
2

2
(2𝜋)2𝜀𝑥 + 𝜀𝑡

𝜀𝑥
2

2
(2𝜋)2 +

𝜀𝑥
3

6
(2𝜋)2

(−𝜀𝑡 − 𝜀𝑥) 
 

 

                                                                       …(12)                                                                                 

This equation is used to calculate the contribution 

coefficient 𝜇2. It involves the time interval coefficient 𝜀𝑡 

and interval coefficient -𝑥, 𝜀𝑥, explained as follows. 

 

b. Calculation of Interval Coefficients 𝜀𝑡 and 𝜀𝑥 

In the formulation of the 𝜇2 contribution equation, it is 

essential to assume very small intervals 𝛿𝑡 and 𝛿𝑥 such that 

the sum (𝑠5 + 𝑠7 + 𝑠9 + ⋯ ) ≪  𝑠3. This condition 

necessitates that both 𝛿𝑡 and 𝛿𝑥 be sufficiently small. 

At very small values of 𝛿𝑡 and 𝛿𝑥, where 𝑠3 ≪ 𝑠2 , the grid 

size can be determined using the optimization equation:  

|
𝑠2

𝑠1

| < 𝜀 

𝜀 represents a small positive number known as the 

optimization coefficient. The terms 𝑠1 and 𝑠2 are further 

broken down: 

|

𝛿𝑡2

2!
Ƌ2𝑓
Ƌ𝑡2 + 𝛿𝑡𝛿𝑥

Ƌ2𝑓
Ƌ𝑡Ƌ𝑥

+
𝛿𝑥2

2!
Ƌ2𝑓
Ƌ𝑥2

𝛿𝑡
Ƌ𝑓
Ƌ𝑡

+ 𝛿𝑥
Ƌ𝑓
Ƌ𝑥

| < 𝜀        … (13) 

 

a. Equation for Grid Coefficient 𝜀𝑡. 

To derive the equation for the grid coefficient  𝜀𝑡, function 

𝑓(𝑡) is used  

𝑓(𝑡) = cos 𝜎𝑡 

Substituting this function into the equation (13) yields: 

|

𝛿𝑡2

2!
Ƌ2𝑓
Ƌ𝑡2

𝛿𝑡
Ƌ𝑓
Ƌ𝑡

| < 𝜀 

Substituting 𝑓(𝑡) and applying the condition cos 𝜎𝑡 =

sin 𝜎𝑡, we remove the absolute value sign and simplify the 

expression to: 

𝛿𝑡

2
𝜎 = 𝜀 

Substituting 𝛿𝑡 = 𝜀𝑡𝑇 and 𝜎 =
2𝜋

𝑇
, yields the following 

equation 

𝜀𝑡 =
𝜀

𝜋
                                                             … . . (14) 

 

This equation is used to calculate the grid coefficient 𝜀𝑡. 

 

 

b. Equation for Grid Coefficient 𝜀𝑥. 

The following equation is used 

 𝑓(𝑥, 𝑡) = cos 𝜎𝑡 cos 𝑘𝑥 

 

Substituting  𝑓(𝑥, 𝑡) into (13) under the condition 

cos 𝜎𝑡 = sin 𝜎𝑡  and cos 𝑘𝑥 = sin 𝑘𝑥 is 

|
−

𝛿𝑡2

2
𝜎2 + 𝛿𝑡 𝛿𝑥 𝑘𝜎 −

𝛿𝑥2

2
𝑘2

−𝛿𝑡𝜎 − 𝛿𝑥 𝑘
| ≤ 𝜀 

 

Multiplying both the numerator and denominator by  −1  

|

𝛿𝑡2

2
𝜎2 − 𝛿𝑡 𝛿𝑥 𝑘𝜎 +

𝛿𝑥2

2
𝑘2

𝛿𝑡𝜎 + 𝛿𝑥 𝑘
| ≤ 𝜀 
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Since the expression within the absolute value sign must be 

positive, the absolute value sign can be removed and 

multiply the denominator on the right-hand side of the 

equation. 

𝛿𝑡2

2
𝜎2 − 𝛿𝑡 𝛿𝑥 𝑘𝜎 +

𝛿𝑥2

2
𝑘2 ≤ 𝜀(𝛿𝑡𝜎 + 𝛿𝑥 𝑘) 

Substituting 𝛿𝑡 = 𝜀𝑡  𝑇, 𝛿𝑡 = 𝜀𝑥 𝐿,  𝜎 =
2𝜋

𝑇
 and 𝑘 =

2𝜋

𝐿
, 

and assuming equality, we move the right-hand side to the 

left-hand side: 

𝜀𝑥
2

2
− (𝜀𝑡 +

𝜀

2𝜋
)  𝜀𝑥 +

𝜀𝑡
2

2
−

𝜀𝜀𝑡

2𝜋
= 0                … (15) 

 

In this equation, 𝜀𝑡 is already known from equation (14). 

There are two possible values for 𝜀𝑥, and the larger of the 

two is selected. 

Table (1) Results of 𝜀𝑡  𝑎𝑛𝑑 𝜀𝑥 calculation 

𝜀 

 

𝜀𝑡 

 

𝜀𝑥 

 

𝜀𝑥

𝜀𝑡

 

0.01 0.003183 0.009549 3.000000 

0.02 0.006366 0.019099 3.000000 

0.03 0.009549 0.028648 3.000000 

0.04 0.012732 0.038197 3.000000 

0.05 0.015915 0.047746 3.000000 

0.06 0.019099 0.057296 3.000000 

0.07 0.022282 0.066845 3.000000 

0.08 0.025465 0.076394 3.000000 

0.09 0.028648 0.085944 3.000000 

0.10 0.031831 0.095493 3.000000 

 

The calculation results for the grid coefficients presented in 

Table (1) reveal that as the optimization coefficient 𝜀 

increases, both grid coefficients 𝜀𝑡 and 𝜀𝑥 also increase, 

which is expected. Of particular interest is the ratio 
𝜀𝑥

𝜀𝑡
 of 3.0.  

From the definition, 

𝜀𝑥

𝜀𝑡

=
𝛿𝑥

𝐿
 

1

𝛿𝑡
𝑇⁄

=
𝛿𝑥

𝛿𝑡

𝑇

𝐿
 

𝛿𝑥

𝛿𝑡

𝑇

𝐿
= 3.0 

𝛿𝑥

𝛿𝑡
= 3.0

𝐿

𝑇
 

𝐿

𝑇
 is wave celerity 𝐶, thus 

𝛿𝑥

𝛿𝑡
= 3.0 𝐶 

This equation is consistent with the Courant (1928) 

criterion. 

Table (2): Calculation Results of the Contribution 

Coefficients 𝜇2 weighting coefficients 𝛾𝑡,2 𝑎𝑛𝑑 𝛾𝑥,2. 

𝜀 𝜇2 𝛾𝑡,2 𝛾𝑥,2 

0.01 -0.001067 1.998933 0.998933 

0.02 -0.004267 1.995733 0.995733 

0.03 -0.009600 1.990400 0.990400 

0.04 -0.017067 1.982933 0.982933 

0.05 -0.026667 1.973333 0.973333 

0.06 -0.038400 1.961600 0.961600 

0.07 -0.052267 1.947733 0.947733 

0.08 -0.068267 1.931733 0.931733 

0.09 -0.086400 1.913600 0.913600 

0.1 -0.106667 1.893333 0.893333 

 

Table (2) shows that as the optimization coefficient 𝜀 

increases, the value of |𝜇2|  also increases. This indicates 

that the contribution of the third-order odd differential term 

becomes more significant. 

 

III. THE FORMULATION OF WEIGHTED 

TAYLOR SERIES 3-D 

Taylor series for functions with 3 variable 𝑓 = 𝑓(𝑥, 𝑧, 𝑡) is, 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝑠1 + 𝑠2 

                                                                +𝑠3 … … + 𝑠𝑛 

Where, 

 𝑠1 = 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
+ 𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

𝑠2 =
𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+ 𝛿𝑡𝛿𝑧

Ƌ2𝑓

Ƌ𝑡Ƌ𝑧
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2

+  𝛿𝑥𝛿𝑧
Ƌ2𝑓

Ƌ𝑥Ƌ𝑧
+

𝛿𝑧2

2!

Ƌ2𝑓

Ƌ𝑧2
 

Etc. 

 

Odd differential terms are grouped 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝑠1 + 𝑠2 + 

                                                        𝑠4 + 𝑠6 … . + ∑ 𝑠𝑗

2𝑛+1

𝑗=2𝑖+1

 

Where 𝑖 ranges from 1 to 𝑛. 

For, 

∑ 𝑠𝑗

2𝑛+1

𝑗=2𝑖+1

= 𝜇3𝑠1                                              … … (16) 

Taylor series can be reformulated into, 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + (1 + 𝜇3)𝑠1 + 

                                                      𝑠2 + 𝑠4 + 𝑠6 …  . (17) 

Expansion is then performed to (𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧, 𝑡 − 𝛿𝑡), 

yielding 

𝑓(𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧, 𝑡 − 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) − (1 + 𝜇3)𝑠1 
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                                                    +𝑠2 + 𝑠4 + 𝑠6 + ⋯     (18) 

Equation (17) is subtracted by equation (18), 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧, 𝑡 − 𝛿𝑡) 

                                                               = 2(1 + 𝜇3)𝑠1 

𝑠1 is broken down, 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧, 𝑡 − 𝛿𝑡) 

                     = 2(1 + 𝜇3)𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 2(1 + 𝜇3)𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

                          +2(1 + 𝜇3)𝛿𝑧
Ƌ𝑓

Ƌ𝑧
                         (19) 

This equation represents the total change in the function 

value as it transitions from (𝑡 − 𝛿𝑡, 𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧) ke 

(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) 

Equation (19) is divided by 2 𝛿𝑥, 

𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) − 𝑓(𝑡 − 𝛿𝑡, 𝑥 − 𝛿𝑥, 𝑧 − 𝛿𝑧)

2𝛿𝑥
 

= (1 + 𝜇3)
𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇3) 

Ƌ𝑓

Ƌ𝑥
+ (1 + 𝜇3)

𝛿𝑧

𝛿𝑥
 
Ƌ𝑓

Ƌ𝑧
 

 

This equation represents the change in the function value in 

the -𝑥 axis direction per unit length. As 𝛿𝑡, 𝛿𝑥 and 𝛿𝑧 y 

approach zero, the total differential in the -𝑥 axis is: 

𝐷𝑓

𝑑𝑥
= (1 + 𝜇3)

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇3) 

Ƌ𝑓

Ƌ𝑥
 

                                        +(1 + 𝜇3)
𝛿𝑧

𝛿𝑥
 
Ƌ𝑓

Ƌ𝑧
       … (20) 

                                                                          

Similarly, the total differential in the -𝑧 axis is, 

 

𝐷𝑓

𝑑𝑧
= (1 + 𝜇3)

𝛿𝑡

𝛿𝑧

Ƌ𝑓

Ƌ𝑡
+ (1 + 𝜇3) 

𝛿𝑥

𝛿𝑧

Ƌ𝑓

Ƌ𝑥
 

                                     +(1 + 𝜇3) 
Ƌ𝑓

Ƌ𝑧
             … (21) 

The first-order Taylor series expansion is: 

𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) 

                       = 𝑓(𝑡, 𝑥, 𝑧) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
+ 𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

Ƌ𝑓

Ƌ𝑥
 in the 3rd term is substituted by (20) and 

Ƌ𝑓

Ƌ𝑧
 the third term 

of the right side is substituted by (21),  

𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) = 𝑓(𝑡, 𝑥, 𝑧) + (3 + 2𝜇3)𝛿𝑡 
Ƌ𝑓

Ƌ𝑡
 

                                    +(2 + 2𝜇3)𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ (2 + 2𝜇3)𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

Defined as, 

𝛾𝑡,3 = 3 + 2𝜇3    

𝛾𝑥,3 = 2 + 2𝜇3    

𝛾𝑧,3 = 2 + 2𝜇3    

Therefore, 

𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) = 𝑓(𝑡, 𝑥, 𝑧) + 𝛾𝑡,3𝛿𝑡 
Ƌ𝑓

Ƌ𝑡
 

                                 +𝛾𝑥,3𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
   … . (22) 

This equation represents a weighted Taylor series expansion 

for the function 𝑓 = 𝑓(𝑥, 𝑧, 𝑡), with weighting coefficients 

𝛾𝑡,3,  𝛾𝑥,3 and 𝛾𝑧. 

 

The calculation of the grid coefficients 𝜀𝑡  and 𝜀𝑥 follows 

the same method as the calculation for the function 𝑓 =

𝑓(𝑥, 𝑡), while the equation for 𝜀𝑧 d is formulated similarly 

to that of 𝜀𝑥, by using the optimization equation: 

|
𝑠2

𝑠1

| < 𝜀 

Substituting 𝑠1 and 𝑠2, 

𝑠1 = 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
+ 𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

𝑠2 =
𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+ 𝛿𝑡𝛿𝑧

Ƌ2𝑓

Ƌ𝑡Ƌ𝑧

+
𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2
                                       

+ 𝛿𝑥𝛿𝑧
Ƌ2𝑓

Ƌ𝑥Ƌ𝑧
+

𝛿𝑧2

2!

Ƌ2𝑓

Ƌ𝑧2
 

Substituting    

𝑓(𝑥, 𝑧, 𝑡) = cos 𝜎𝑡 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) 

under cos 𝜎𝑡 = sin 𝜎𝑡, cos 𝑘𝑥 = sin 𝑘𝑥  and cosh 𝑘(ℎ +

𝑧) = sinh 𝑘(ℎ + 𝑧). Substituting 𝛿𝑡 = 𝜀𝑡𝑇, 𝛿𝑥 =

𝜀𝑥𝐿 and 𝛿𝑧 = 𝜀𝑧𝐿 serta 𝜎 =
2𝜋

𝑇
 and 𝑘 =

2𝜋

𝐿
 yields the 

equation: 

1 

2
𝜀𝑧

2 − (𝜀𝑡  + 𝜀𝑥  +
𝜀

2𝜋
) 𝜀𝑧 −

𝜀𝑡
2 

2
+ 𝜀𝑡 𝜀𝑥 −

 𝜀𝑥
2

2
 

                                         +
𝜀𝜀𝑡

2𝜋
+

𝜀𝜀𝑥

2𝜋
= 0       … (23) 

In this equation,  𝜀𝑡 and  𝜀𝑥 are known constants, with 𝜀𝑡 is 

calculated using equation (14) and 𝜀𝑥 is calculated by (15). 

The equation has two roots, and the largest root is chosen. 

 

The equation for calculating the contribution coefficient 𝜇3 

is formulated in the same manner as for 𝜇2. Yielding, 

𝜇3 =
𝑎

𝑏
                                                              … . . (24) 

𝑎 =
(2𝜋)3 

6
𝜀𝑡

3 +
(2𝜋)3 

2
𝜀𝑡

2𝜀𝑥 −
(2𝜋)3 

2
𝜀𝑡

2𝜀𝑧 + 

        
(2𝜋)3 

2
𝜀𝑡𝜀𝑥

2 + (2𝜋)3𝜀𝑡𝜀𝑥𝜀𝑧 −
(2𝜋)3 

2
𝜀𝑡𝜀𝑧

2 

       +
(2𝜋)3

6
 𝜀𝑥

3 −
(2𝜋)3 

2
𝜀𝑥

2𝜀𝑧 −
(2𝜋)3 

2
𝜀𝑥𝜀𝑧

2 

       +
(2𝜋)3 

6
𝜀𝑧

3 

𝑏 = −2𝜋𝜀𝑡 − 2𝜋𝜀𝑥 + 2𝜋𝜀𝑧 
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Table (3) Values of 𝜀𝑧 𝑎𝑛𝑑 𝜇3 

𝜀 𝜀𝑧 𝜇3 

0.01 0.028648 0.049333 

0.02 0.057296 0.098667 

0.03 0.085944 0.148000 

0.04 0.114592 0.197333 

0.05 0.143239 0.246667 

0.06 0.171887 0.296000 

0.07 0.200535 0.345333 

0.08 0.229183 0.394667 

0.09 0.257831 0.444000 

0.1 0.286479 0.493333 

 

Table (4) Values of 𝛾𝑡,3,  𝛾𝑥,3 𝑎𝑛𝑑 𝛾𝑧,3 

 𝜀 𝛾𝑡,3 𝛾𝑥,3 𝛾𝑧,3 

0.01 3.098667 2.098667 2.098667 

0.02 3.197333 2.197333 2.197333 

0.03 3.296000 2.296000 2.296000 

0.04 3.394667 2.394667 2.394667 

0.05 3.493333 2.493333 2.493333 

0.06 3.592000 2.592000 2.592000 

0.07 3.690667 2.690667 2.690667 

0.08 3.789333 2.789333 2.789333 

0.09 3.888000 2.888000 2.888000 

0.1 3.986667 2.986667 2.986667 

 

IV. WAVE CONSTANT EQUATIONS IN DEEP 

WATER 

The continuity equation, as formulated in Equation (22), 

where 𝛾𝑥,3 = 𝛾𝑧 no longer represents a weighted continuity 

equation, nor does it take the form of a weighted Laplace 

equation as discussed in Hutahaean (2023a). The velocity 

potential derived from solving the Laplace equation via the 

method of variable separation (Dean, 1991) is given by: 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺(cos 𝑘𝑥 + sin 𝑘𝑥 ) 

                                       cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 … . (25) 

Where, 

𝑥 is the horizontal coordinate, 𝑧 is the vertical axis and 𝑡 is 

time. 

𝐺 : is the wave constant 

𝑘 ∶ is the wave number, 𝑘 =
2𝜋

𝐿
, 𝐿 is wavelength 

𝜎 : is angular frequency, 𝜎 =
2𝜋

𝑇
, 𝑇 is wave period. 

There are three wave constants: 𝐺, 𝑘 and 𝜎 , equation of 

which must be determined. 

a. Wave Amplitude Function 

At the characteristic point where cos 𝑘𝑥 = sin 𝑘𝑥, the 

velocity potential equation becomes: 

𝜙(𝑥, 𝑧, 𝑡) = 2𝐺 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 . . (26) 

By applying the Kinematic Free Surface Boundary 

Condition (Equation 10), the following is obtained 

𝑤𝜂 = 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥,2𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

This equation can be reformulated into, 

𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝛾𝑥,2𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                              … . . (27) 

𝜂(𝑥, 𝑡)  is the water surface elevation relative to the still 

water level, 𝑤𝜂(𝑥, 𝑡) is the vertical velocity of surface water 

particles,  𝑢𝜂(𝑥, 𝑡)  is the horizontal velocity of surface 

water particles. 

 

Substituting (26) into (27) where 𝑢 = −
Ƌ𝜙

Ƌ𝑥
 and 𝑤 = −

Ƌ𝜙

Ƌ𝑧
 

and integrating to 𝑡 obtaining a wave amplitude function 

Hutahaean (2023b), 

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
cosh  𝜃𝜋 (tanh 𝜃𝜋 −

𝛾𝑥,2𝑘𝐴

2
)      … . (28) 

𝐴 is wave amplitude, 𝜃 is deep water coefficient, where 

tanh 𝜃𝜋 ≈ 1. In this research, 𝜃 = 3 is used to keep the 

deep water sea bed horizontal particle velocity very small 

and to avoid large wave amplitude in the coastline. 

A new wave constant amplitude 𝐴 is obtained. In this 

research, wave amplitude 𝐴 is the input, therefore wave 

amplitude 𝐴 is an identified variable.  

The next step involves formulating the wave constant 

equations for 𝜎, 𝑘 and 𝐺 as the function of wave amplitude 

𝐴. 

b. Formulation of equation for 𝐺. 

In this section, the complete velocity potential equation is 

applied to the Kinematic Free Surface Boundary Condition 

to derive wave constant equations consistent with the 

complete velocity potential. The formulation re-employs 

the Kinematic Free Surface Boundary Condition to ensure 

that the derived wave constant equations are rigorously 

aligned with this boundary condition. Through the 

utilization of the complete velocity potential, the 

corresponding water surface elevation equation is 

formulated as follows: 

𝜂(𝑥, 𝑡) =
𝐺𝑘

𝛾𝑡,2𝜎
sinh  𝑘(ℎ + 𝜂) (cos 𝑘𝑥 + sin 𝑘𝑥) cos 𝜎𝑡 

 

   +
𝛾𝑥𝐺 𝑘

𝛾𝑡,2𝜎
cosh  𝑘(ℎ + 𝜂)

Ƌ𝜂

Ƌ𝑥
(−sin 𝑘𝑥 + cos 𝑘𝑥) cos 𝜎𝑡 
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𝜂 maximum when 
Ƌ𝜂

Ƌ𝑥
= 0  and cos 𝜎𝑡 = 1, where for 

sinusoidal wave  𝜂𝑚𝑎𝑥 = 𝐴, the following relation is 

obtained  

𝐴 =
𝐺𝑘

𝛾𝑡,2𝜎
sinh  𝑘(ℎ + 𝜂) (cos 𝑘𝑥 + sin 𝑘𝑥) 

At cos 𝑘𝑥 = sin 𝑘𝑥 and 𝑘(ℎ + 𝜂) = 𝜃𝜋, therefore 

𝐴 =
√2 𝐺𝑘

𝛾𝑡,2𝜎
sinh  𝜃𝜋                                     … . . (29) 

This equation can be reformulated into equation for 𝐺 as 

follows. 

𝐺 =
𝛾𝑡,2𝜎𝐴

√2 𝑘 sinh 𝜃𝜋
                                            … (30) 

 

c. Formulation of the Deep Water Wave Number  𝑘 

equation 

By equating Equation (28) with Equation (29), the equation 

for the wave number  𝑘 is 

𝑘 =
tanh 𝜃𝜋

𝛾𝑥,2𝐴
(2 − √2)                                      . … (31) 

 

d.  Formulation of the Equation for Wave Period 𝑇. 

The Euler momentum conservation equation is employed, 

with the assumption that convective acceleration is 

negligible, 

𝛾𝑡,3

Ƌ𝑢𝜂

Ƌ𝑡
= −𝑔

Ƌ𝜂

Ƌ𝑥
                                            … . . (32) 

𝑢 is horizontal particle velocity where 𝑢 = −
Ƌ𝜙

Ƌ𝑥
, is potential 

velocity 𝜙 using (26).  

For water surface elevation equation, the following is used: 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝑘𝑥 cos 𝜎𝑡 

Obtaining an equation,  

𝛾𝑡,32𝐺𝜎 cosh  𝜃𝜋 = 𝑔𝐴 

Substituting 𝐴 to (29) yielding: 

𝜎2 =
𝑔𝑘 tanh  𝜃𝜋  

√2𝛾𝑡,2𝛾𝑡,3

                                          … . (33) 

 

Substituting  𝑘 and (31), 

𝜎2 =
𝑔 tanℎ2  𝜃𝜋  

𝛾𝑡,2𝛾𝑡,3𝛾𝑥,2𝐴
(√2 − 1)                          . . . (34) 

 

e. Results of Deep Water Wave Constants Equations. 

In this section, the calculation results of deep water wave 

constants, including the wave period 𝑇 and wavelength 𝐿0 

using input wave amplitude 𝐴0 where 𝐻0 = 2𝐴0. Table (5) 

presents the result. 

The weighting coefficients used in these calculations are 

obtained through the optimization process, with an 

optimization coefficient 𝜀 = 0.005, where 𝛾𝑡,2 =

1.999773,  𝛾𝑡,3 = 3.049333, 𝛾𝑥 = 0.999733. These 

coefficients will be applied in subsequent equations in this 

research. 

Table (5) Deep water wave constants 

𝐻0 

(m) 

𝑇 

(sec) 

𝐿0 

(m) 

𝐻0

𝐿0

 

0.4 3.442 2.145 0.187 

0.8 4.867 4.289 0.187 

1.2 5.961 6.434 0.187 

1.6 6.883 8.579 0.187 

2 7.696 10.723 0.187 

2.4 8.431 12.868 0.187 

2.8 9.106 15.012 0.187 

3.2 9.735 17.157 0.187 

3.6 10.325 19.302 0.187 

4 10.884 21.446 0.187 

 

The wave steepness, 
𝐻0

𝐿0
, where 

𝐻0

𝐿0
= 0.187. When 

compared with the critical wave steepness criterion from 

Toffoli et al. (2010), where 
𝐻0

𝐿0
= 0.170 it is evident that the 

calculated wave steepness is slightly larger. This indicates 

that the wavelength equation (31) produces a critical wave 

steepness for a given input wave amplitude.  

 

To further assess the condition of the resulting wave period, 

a comparison is made with the wave period equation from 

Wiegel (1949, 1964), given by: 

𝑇𝑤𝑖𝑒𝑔 = 15.6√
𝐻0

𝑔
                                           … . . (35) 

The comparison is presented in Table(6) and Fig (1) 

Table (6) The Comparison to Wiegel’s Wave Period. 

𝐻0 

(m) 

𝑇 

(sec) 

𝑇𝑤𝑖𝑒𝑔 

(sec) 

𝛿 

(%) 

0.4 3.442 3.15 9.259 

0.8 4.867 4.455 9.259 

1.2 5.961 5.456 9.259 

1.6 6.883 6.3 9.259 

2 7.696 7.044 9.259 

2.4 8.431 7.716 9.259 
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2.8 9.106 8.334 9.259 

3.2 9.735 8.91 9.259 

3.6 10.325 9.45 9.259 

4 10.884 9.961 9.259 

Note : 𝛿 = |
𝑇0−𝑇0−𝑤𝑖𝑒𝑔

𝑇0−𝑊𝑖𝑒𝑔
| 𝑥100% 

𝑇 from equation (34) differs by 9.259% from the wave 

period in Wiegel’s formulation, a difference considered 

reasonable, indicating that the result from equation (34) is 

still reliable. If the right side of equation (34) is multiplied 

by 1.2116, the wave period would match that of equation 

(35). However, the goal of this research is not to match the 

wave period in equation (35), but to explore the potential 

within the existing conservation equations. Equation (35) 

does not guarantee exact correct wave period. 

 
Fig (1) Comparison of wave period eq (34) with Wiegel’s 

wave period. 

 

Equation (34) shows that all the weighting coefficients are 

included, making the equation sensitive to their values. As 

the optimization coefficient 𝜀 decreases, the difference from 

the Wiegel equation also decreases, but it remains around 

8.xxx%. For example, 𝜀 = 0.001  results in a difference of  

𝛿 = 8.571 %, with a wave steepness of 0.187. Therefore, 

this research uses the weighting coefficients obtained with 

𝜀 = 0.005, ensuring that the influence of higher-order 

differentials on the coefficients is not entirely lost. 

 

V. SHOALING-BREAKING MODEL 

The shoaling-breaking model is formulated using the wave 

amplitude function (eq. (28)) as follows. 

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
cosh  𝜃𝜋 (tanh 𝜃𝜋 −

𝛾𝑥,2𝑘𝐴

2
)      … . (28) 

To make formulation easier, it is defined 

𝜆 =
1

𝛾𝑡,2𝜎
cosh  𝜃𝜋 (tanh 𝜃𝜋 −

𝛾𝑥,2𝑘𝐴

2
)        … (36) 

Thereby,    

𝐴 = 2𝐺𝑘𝜆                                                           … . (37) 

Differentiation of the Wave Amplitude with respect to the 

Horizontal -𝑥, 

𝑑𝐴

𝑑𝑥
= 2 (𝐺

𝑑𝑘

𝑑𝑥
+ 𝑘

𝑑𝑘

𝑑𝑥
) 𝜆                            … … . (38) 

Where 
𝑑𝜆

𝑑𝑥
= 0 with respect to wave number conservation 

equation (Hutahaean (2023b)),  
𝑑𝑘𝐴

𝑑𝑥
= 0. 

Equation of energy conservation (Hutahaean (2023b)), 

𝐺
Ƌ𝑘

Ƌ𝑥
+ 2𝑘

Ƌ𝐺

Ƌ𝑥
0                                                 … . (39) 

Or 

Ƌ𝐺

Ƌ𝑥
= −

𝐺

2𝑘

Ƌ𝑘

Ƌ𝑥
 

 

Substituting the last equation to (38), 

𝑑𝐴

𝑑𝑥
= 𝐺

𝑑𝑘

𝑑𝑥
𝜆                                                       … (40) 

 

The equation of wave number conservation (Hutahaean, 

2023b) is expressed as 

𝑑𝑘 (ℎ +
𝐴
2

)

𝑑𝑥
= 0 

This equation can be reformulated into, 

𝑘
𝑑𝐴

𝑑𝑥
= −2 (ℎ +

𝐴

2
)

𝑑𝑘

𝑑𝑥
− 2𝑘

𝑑ℎ

𝑑𝑥
 

Substituting the left-hand side with Equation (40), this 

leads to the following equation for  
𝑑𝑘

𝑑𝑥
, 

𝑑𝑘

𝑑𝑥
= −

𝑘

ℎ +
𝐴
2

+
𝐺𝑘𝜆

2

𝑑ℎ

𝑑𝑥
                               … . . (41) 

 

a. Summary of Shoaling-Breaking Equations. 

For waves moving from a point 𝑥 and water depth ℎ𝑥 to 𝑥 +

𝛿𝑥 and water depth ℎ𝑥+𝛿𝑥, therefore 

 

a. Change in Wave Number: 

𝑑𝑘

𝑑𝑥
= −

𝑘

ℎ +
𝐴
2

+
𝐺𝑘𝜆

2

𝑑ℎ

𝑑𝑥
                               … . . (41) 

𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥
𝑑𝑘

𝑑𝑥
 

b. Change in wave amplitude 

𝑑𝐴

𝑑𝑥
=

𝐺

2𝑘

Ƌ𝑘

Ƌ𝑥
𝜆                                                   … . . (40) 

𝜆 =
1

𝛾𝑡,2𝜎
cosh  𝜃𝜋 (tanh 𝜃𝜋 −

𝛾𝑥,2𝑘𝐴

2
)             . . (36)  

𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥
𝑑𝐴

𝑑𝑥
 

0
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15
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T 
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c. Chance in wave constant 𝐺 

Integration of energy conservation equation (39), 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1
2

(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)
 

d. Change in wave energy  

The wave energy equation at one wavelength is given by 

𝐸 =
1

8
𝜌𝑔 𝐻2𝐿 

Or, 

𝐸 = 𝜋𝜌𝑔 
𝐴2

𝑘
 

The wave energy change is, 

𝑑𝐸

𝑑𝑥
= 𝜋𝜌𝑔 (

2𝐴

𝑘

𝑑𝐴

𝑑𝑥
−

𝐴2

𝑘2

𝑑𝑘

𝑑𝑥
)                           … (42) 

𝐸𝑥+𝛿𝑥 = 𝐸𝑥 + 𝛿𝑥
𝑑𝐸

𝑑𝑥
 

Where   
𝑑𝐴

𝑑𝑥
  from (40) and 

𝑑𝑘

𝑑𝑥
 dari (41). 

 

b. Shoaling-Breaking Model Results. 

The results of the shoaling-breaking model for a wave with 

a deep water amplitude   𝐴0 = 1.20 𝑚 are shown in the 

following section. The deep water coefficient is set at 𝜃 =

3,  and the optimization coefficient used for calculating the 

weighting coefficients is 𝜀 = 0.005.  

In Fig (2), the wave height 𝐻 and 0.1 𝐻2𝐿, are plotted 

against water depth. The factor of 0.1 𝐻2𝐿 is used to prevent 

the 𝐻 from having smaller value. 

 

Fig (2) Changes in wave energy during shoaling and 

breaking 

 

Fig (2) illustrates that the value of 𝐻2𝐿 decreases 

continuously as the wave enters shallow water, which 

corresponds to the shoaling process. At a water depth of ℎ =

6.669 𝑚 wave breaking occurs. Notably, the 𝐻2𝐿 graph 

remains continuous at the breaking point, and no sudden 

spike in energy loss is observed. The remaining wave 

energy at this point is calculated to be 0.675 𝐸0 as shown in 

Table (7). 

Table (7) Wave Energy at the Breaking Point 

𝑇 

(sec) 

𝐻0 

(m) 

𝐻𝑏  

(m) 

ℎ𝑏 

(m) 

𝐸𝑏

𝐸0

 

0.4 3.467 0.528 1.111 0.675 

0.8 4.904 1.057 2.223 0.675 

1.2 6.006 1.585 3.334 0.675 

1.6 6.935 2.113 4.446 0.675 

2 7.753 2.642 5.557 0.675 

2.4 8.493 3.17 6.669 0.675 

2.8 9.174 3.698 7.78 0.675 

3.2 9.807 4.227 8.892 0.675 

3.6 10.402 4.755 10.003 0.675 

4 10.965 5.283 11.115 0.675 

 

c.  Shoaling-Breaking Model Evaluation 

To assess the reliability of the shoaling-breaking model 

developed in this research, a comparison was made between 

the breaking wave height calculated using the model and the 

breaking wave height obtained from the Komar and 

Gaughan (1972) equation. The equation used for 

comparison is: 

𝐻𝑏−𝐾𝐺 = 0.39 𝑔
1

5⁄ (𝑇0𝐻0
2)

2
5⁄                         … . (43)                   

 

Table (8): Evaluation of the Shoaling-Breaking Model 

Breaker Height Against the Komar-Gaughan Breaker 

Height 

𝐻0 

(m) 

𝑇 

(sec) 

𝐻𝑏  

(m) 

𝐻𝑏−𝐾𝐺 

(m) 

𝛿 

(%) 

0.4 3.467 0.528 0.486 8.606 

0.8 4.904 1.057 0.973 8.606 

1.2 6.006 1.585 1.459 8.606 

1.6 6.935 2.113 1.946 8.606 

2 7.753 2.642 2.432 8.606 

2.4 8.493 3.17 2.919 8.606 

2.8 9.174 3.698 3.405 8.606 

3.2 9.807 4.227 3.892 8.606 

3.6 10.402 4.755 4.378 8.606 

4 10.965 5.283 4.865 8.606 

Note : 𝛿 = |
𝐻𝑏−𝐻𝑏−𝐾𝐺

𝐻𝑏−𝐾𝐺
| 𝑥100% 

0
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8
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Fig (3) The comparison of the breaker heights predicted 

by the shoaling-breaking model and the Komar-Gaughan 

method. 

 

The observed difference is 8.608 (moderate). 

d. Energy Loss Evaluation. 

In the context of energy loss during shoaling and breaking, 

the remaining wave energy at the breaking point is found to 

be  0.675 𝐸0,   where 𝐸0 represents the initial wave energy 

in deep water. To further evaluate the accuracy of energy 

loss, the breaking wave height equation is formulated using 

the energy loss equation: 

𝐻𝑏
2𝐿𝑏 = 0.675 𝐻0

2𝐿0                                          … (44) 

From equation (31), breaking occurs when 

tanh 𝜃𝜋 −
𝛾𝑥,2𝑘𝐴

2
= 0 

This equation yields, 

𝐿𝑏 =
𝜋𝛾𝑥,2𝐻𝑏

2 tanh 𝜃𝜋
                                                … . (45) 

Substituting (45) to (44), 

𝐻𝑏
3 =

2𝑥0.675  tanh 𝜃𝜋

𝜋𝛾𝑥,2

𝐻0
2𝐿0                       … . (46) 

From (31),  

𝐿0 =
𝜋𝛾𝑥,2𝐻0

(2 − √2) tanh 𝜃𝜋
                               … . . (47) 

Substituting (47) to (46) obtains, 

𝐻𝑏 = (
 0.675

(1 −
1

√2
)

)

1
3⁄

𝐻0                                … . (48) 

 

Table (9) The Comparison between 𝐻𝑏−48, eq(48), and 

𝐻𝑏-Komar-Gaughan 

𝐻0 

(m) 

𝑇 

(sec) 

𝐻𝑏−48 

(m) 

𝐻𝑏−𝐾𝐺 

(m) 

𝛿 

(%) 

0.4 3.467 0.528 0.486 8.612 

0.8 4.904 1.057 0.973 8.612 

1.2 6.006 1.585 1.459 8.612 

1.6 6.935 2.113 1.946 8.612 

2 7.753 2.642 2.432 8.612 

2.4 8.493 3.17 2.919 8.612 

2.8 9.174 3.698 3.405 8.612 

3.2 9.807 4.227 3.892 8.612 

3.6 10.402 4.755 4.378 8.612 

4 10.965 5.284 4.865 8.612 

Note : 𝛿 = |
𝐻𝑏−50−𝐻𝑏−𝐾𝐺

𝐻𝑏−𝐾𝐺
| 𝑥100% 

Upon comparing the breaking wave heights calculated from 

the energy loss equation 𝐻𝑏−48 that is 𝐻𝑏-eq(48) and 𝐻𝑏-

Komar-Gaughan (Table (9)), it is observed that both 

produce breaker heights that are  close. This indicates that 

the shoaling-breaking model, which uses wave energy loss 

as part of its formulation, yields accurate results for the 

breaking wave height. Since 𝐻𝑏−48  is derived using the 

energy loss during shoaling and breaking, the close 

agreement between the two sets of results suggests that the 

model effectively accounts for wave energy loss.  

The loss of energy during shoaling and breaking processes 

is converted into kinetic energy for non-orbital currents, 

known as stress radiation (Longuet-Higgin, 1970), with 

some of this energy transforming into longshore currents. 

The shoaling-breaking model accurately estimates the 

kinetic energy of these longshore currents, and its ability to 

predict their velocity is crucial for understanding coastal 

dynamics, such as sediment transport and shoreline 

changes.  

 

VI. LONGSHORE CURRENT ANALYSIS 

Wave energy lost during shoaling and breaking is converted 

into the kinetic energy of non-orbital currents that move in 

the same direction as the wave. This release of wave energy 

is known as stress radiation. 

 

The loss of wave energy at one wavelength is expressed by 

(42), then the water particle energy losses  is   

𝛿𝐸𝑤 =

𝑑𝐸
𝑑𝑥
𝜌𝐿

 

The energy kinetic particle due to radiation current, 

𝐸𝑘 =
𝑉𝑅

2

2𝑔
 

Then this equation applies, 

0

2
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6
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H
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𝑉𝑅
2

2𝑔
= |

𝑑𝐸
𝑑𝑥
𝜌𝐿

| 

Substituting (42) 

𝑉𝑅
2 =

2𝜋𝑔2

𝐿
|
2𝐴

𝑘

𝑑𝐴

𝑑𝑥
−

𝐴2

𝑘2

𝑑𝑘

𝑑𝑥
|                                  . . (49) 

𝑉𝑅 is the total velocity of the radiation current. For waves 

that form an angle 𝛼 t to the normal of the coast, the 

longshore current velocity is:, 

𝑉𝐿𝑠 = 𝑉𝑅 sin 𝛼                                                  … . . (50)  

An example of the radiation current velocity analysis 𝑉𝑅 is 

shown in Figure (4), where the waves used have a deep-

water wave height 𝐻0 = 2.4 𝑚 , with breaking occurring at 

a breaker depth of ℎ𝑏 = 6.669 𝑚.  

   
Fig (4) Stress radiation current velocity 𝑉𝑅. 

 

Similar to the wave energy graph, this radiation current 

graph is continuous, with no spike at the breaking point. The 

highest velocity is 1.13 m/sec, occurring at a water depth of 

ℎ = 2.65 m, while at the breaker depth of ℎ𝑏 = 6.669 𝑚, 

velocity 𝑉𝑅 = 0.57 𝑚/𝑠𝑒𝑐. Notably, the maximum velocity 

does not occur at the breaking point. As shown in Figure 

(4), the maximum velocity occurs at a depth where the wave 

height has decreased significantly. 

Table (10) presents the radiation current velocities at 

different wave periods. It shows that the maximum current 

velocity does not occur at the breaking point, but rather at a 

shallower water depth than the breaker depth. For example, 

with a deep-water wave height 𝐻0 = 2.0 𝑚, 𝑉𝑅 the radiation 

current velocity at the breaking point 𝑉𝑅−𝑏 = 0.52 𝑚/𝑠𝑒𝑐 

at a breaker depth of ℎ𝑏 = 5.56 𝑚, while the maximum 

velocity 𝑉𝑚𝑎𝑥 = 1.03 𝑚/𝑠𝑒𝑐, occurs at a shallower water 

depth of ℎ𝑣𝑚𝑎𝑥 = 2.21 𝑚.  

 

 

 

 

 

Table (10): Velocity 𝑉𝑅 at breaking point 𝑉𝑅−𝑏 and 

maximum speed 𝑉𝑚𝑎𝑥. 

𝐻0 

(m) 

𝑇 

(sec) 

𝑉𝑅−𝑏 

(m) 

ℎ𝑏 

(m/s) 

𝑉𝑚𝑎𝑥  

(m/s) 

ℎ𝑣𝑚𝑥 

(m) 

0.4 3.47 0.23 1.11 0.46 0.44 

0.8 4.9 0.33 2.22 0.65 0.88 

1.2 6.01 0.4 3.33 0.8 1.33 

1.6 6.93 0.46 4.45 0.92 1.77 

2 7.75 0.52 5.56 1.03 2.21 

2.4 8.49 0.57 6.67 1.13 2.65 

2.8 9.17 0.61 7.78 1.22 3.09 

3.2 9.81 0.66 8.89 1.3 3.53 

3.6 10.4 0.7 10 1.38 3.98 

4 10.96 0.73 11.11 1.45 4.42 

 

a. Results of Prior Research 

The theory of stress radiation was first proposed by 

Longuet-Higgin (1970), which describes how wave energy, 

transferred through the orbital motion of water particles, is 

converted into non-orbital currents moving in the same 

direction as the wave. Based on this theory, the longshore 

current equation was formulated. Several researchers have 

developed longshore current equations based on Longuet-

Higgins' theory, which are widely used in the field: 

1. Komar (1976), modified Longuet Higgins 

𝑉𝐾𝑜𝑚 = 2.7 (
𝛾𝑏

2
√𝑔𝐻𝑏) sin 𝛼𝑏 cos 𝛼𝑏 

Where 𝛾𝑏 = 0.78  

2.Galvin, C. (1987) 

𝑉𝐺𝑎𝑙 = 𝑔 𝑚 𝑇 sin 2𝛼𝑏 

𝑇: wave period 

𝑚: bottom slope 

Table (11) presents a comparison of the longshore current 

velocity model results at the breaking point 𝑉𝐿−𝑏 as derived 

from the model and the equations from Komar and Galvin, 

using an angle 𝛼𝑏 = 150, resulting in model 𝑉𝐿−𝑏 as the 

smallest among the three methods.. 

Table (11) Comparison longshore current velocity at 

breaking point. 

𝑇 

(sec) 

𝐻𝑏  

(m) 

𝑉𝐾𝑜𝑚 

(m/sec) 

𝑉𝐺𝑎𝑙  

(m/sec) 

𝑉𝐿−𝑏  

(m/sec) 

3.47 0.53 0.6 0.17 0.06 

4.9 1.06 0.85 0.24 0.09 

0
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4
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6.01 1.58 1.04 0.29 0.1 

6.93 2.11 1.2 0.34 0.12 

7.75 2.64 1.34 0.38 0.13 

8.49 3.17 1.47 0.42 0.15 

9.17 3.7 1.59 0.45 0.16 

9.81 4.23 1.7 0.48 0.17 

10.4 4.75 1.8 0.51 0.18 

10.96 5.28 1.9 0.54 0.19 

  

Table (12) compares the longshore current velocities from 

Komar and Galvin with the maximum velocity from the 

model. As seen in the table, the model results are still the 

smallest, but they are quite close to the longshore current 

velocity from Galvin.  

Table (12) Comparison  with the maximum velocity. 

𝑇 

(sec) 

𝐻𝑏  

(m) 

𝑉𝐾𝑜𝑚 

(m/sec) 

𝑉𝐺𝑎𝑙  

(m/sec) 

𝑉𝐿−𝑚𝑎𝑥 

(m/sec) 

3.47 0.53 0.6 0.17 0.12 

4.9 1.06 0.85 0.24 0.17 

6.01 1.58 1.04 0.29 0.21 

6.93 2.11 1.2 0.34 0.24 

7.75 2.64 1.34 0.38 0.27 

8.49 3.17 1.47 0.42 0.29 

9.17 3.7 1.59 0.45 0.31 

9.81 4.23 1.7 0.48 0.34 

10.4 4.75 1.8 0.51 0.36 

10.96 5.28 1.9 0.54 0.38 

 

However, velocities from the model and Galvin's equation 

occur at different water depths. 

There is a significant difference between the model results 

and those from previous equations. The previous equations 

are applied to the breaker depth, whereas the maximum 

velocity in the model occurs at a shallower depth, not at the 

breaker depth. 

Nevertheless, the analysis of breaker height and the 

remaining wave energy at the breaking point validates the 

accuracy of the wave energy release in the shoaling and 

breaking model, which in turn confirms the accuracy of the 

resulting longshore current. 

The calculations in Table (12) are performed using a deep-

water coefficient of 𝜃 = 3.0. In Table (13), with a 

coefficient 𝜃 = 1.95, where 
𝐻𝑏

ℎ𝑏
≈ 0.78, 𝑉𝐿−𝑚𝑎𝑥 is found 

close to 𝑉𝐺𝑎𝑙 , however these velocities occur at different 

water depths. 𝑉𝐺𝑎𝑙  occurs at the breaker depth, while 𝑉𝐿−𝑚𝑎𝑥 

occurs at a shallower water depth (see Table (10)). 

Table (13) Comparison longshore current velocity at 𝜃 =

1.95. 

 𝑇 

(sec) 

𝐻𝑏  

(m) 

𝑉𝐾𝑜𝑚 

(m/sec) 

𝑉𝐺𝑎𝑙  

(m/sec) 

𝑉𝐿−𝑚𝑎𝑥 

(m/sec) 

3.47 0.53 0.6 0.17 0.16 

4.9 1.06 0.85 0.24 0.22 

6.01 1.58 1.04 0.29 0.27 

6.93 2.11 1.2 0.34 0.31 

7.75 2.64 1.34 0.38 0.35 

8.49 3.17 1.47 0.42 0.39 

9.17 3.7 1.59 0.45 0.42 

9.81 4.23 1.7 0.48 0.44 

10.4 4.75 1.8 0.51 0.47 

10.96 5.28 1.9 0.54 0.5 

 

VII. CONCLUSION 

This research shows that the method used to formulate the 

weighting coefficient in the weighted Taylor series is more 

systematic and accurate compared to the previous approach 

by the same researcher. By applying the correct weighting 

coefficient, the resulting weighted Taylor series effectively 

represents the complete Taylor series. 

The development of the shoaling-breaking model through 

the application of the weighted Taylor series yields accurate 

predictions for both the breaker height and the remaining 

energy at the breaking point. Therefore, it can be concluded 

that the shoaling-breaking model in this research 

successfully simulates the release of wave energy, or stress 

radiation, with high fidelity. Moreover, given the 

appropriate kinetic energy supply from the shoaling-

breaking model, it can be concluded that the longshore 

current produced by the model is accurate. 

The maximum longshore current velocity does not occur at 

the breaking point. Instead, it is observed at a shallower 

depth than the breaker depth, specifically at a depth where 

a significant reduction in wave energy occurs. 
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