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Abstract— Monitoring to evaluate wastewater quality during the 

production process requires simple measurements and Realtime analysis as 

well. Among common methods for heavy metal analysis, the UV-VIS 

absorption spectroscopy is considered a potential analytical method due to 

its low cost and simple operation, direct online integration with treatment 

tanks. However, it faces limitations in simultaneously analyzing multiple 

metals due to overlapping absorption spectra. This study applied machine 

learning (ML) algorithms (Decision Tree (DT), Random Forest(RF) and 

deep learning (DL) models (Multilayer Perceptron - MLP, and 1D 

Convolutional Neural Network - 1D-CNN) to improve the accuracy of 

simultaneous quantitative analysis of three metals—Cu, Zn, and Ni in 

electroplating wastewater—based on VIS absorption spectra data of their 

colored complexes in aqueous solution with the PAN reagent in the 

presence of a surfactant. Large datasets were collected from UV-VIS 

spectra of 500 wastewater spiked samples in the range of 620-500 nm with 

a 1 nm interval, resulting in a dataset of size 500x121, followed by the 

application of ML and DL models using the Python programming language. 

Model performance was evaluated based on the correlation coefficient (R²) 

and root mean square error (RMSE). Preprocessing methods such as first-

order derivatives and Principal Component Analysis (PCA) were applied 

to reduce noise in the dataset before training with machine learning 

algorithms. Results showed that the 1D-CNN model outperformed the 

others, achieving R² > 0.88 and RMSE < 0.036 for all three analytes. It is 

supposed by its ability to directly extract nonlinear features from raw data 

without the need for dimensionality reduction. In contrast, the DT, RF, and 

even MLP models, which utilized principal component analysis (PCA) for 

dimensionality reduction, demonstrated significantly lower accuracy due to 

information loss during the reduction process. The proposed model was 

successfully applied for rapid and simple metal concentration 
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determination in practical samples using a test kit with reagent, a compact 

spectrophotometer, and an automated PC-based data reading application. 

These findings demonstrate that combining UV-VIS spectroscopy with 

machine learning and deep learning algorithms is an effective and feasible 

approach for the simultaneous detection of multiple heavy metals in specific 

matrix wastewater samples.  

 

I. INTRODUCTION 

Anthropogenic emissions of heavy metals from industrial 

sectors such as steel production, metallurgy, electroplating, 

battery and accumulator manufacturing, metal surface 

treatment, recycling, and the chemical and fertilizer 

industries contribute to the bioaccumulation of these toxic 

elements in the human body, posing a significant public 

health concern [1]. Within the electroplating industry, 

transition metals including copper (Cu), zinc (Zn), and 

nickel (Ni) are routinely employed to form thin metallic 

coatings on substrates, typically composed of metal or 

plastic, with the objective of enhancing mechanical 

durability, providing corrosion resistance, and improving 

surface aesthetics [2]. This process results in the release of 

heavy metals through activities such as post-plating rinsing, 

solution spillage, and tank cleaning, with concentrations 

ranging from a few milligrams per liter (mg/L) to several 

hundred mg/L [3]. Before this wastewater is discharged into 

the environment, it must be treated using methods such as 

coagulation, adsorption, or ion exchange to ensure it 

complies with the permissible limits for Cu, Zn, and Ni as 

defined by QCVN 40:2021/BTNMT—2 mg/L, 3 mg/L, and 

1 mg/L respectively—prior to release into non-potable 

water bodies (e.g., rivers and lakes used for irrigation, 

transportation, etc.) [4]. Exceeding these limits can pose 

serious health risks: copper, due to its oxidative properties, 

can damage red blood cells [5]; nickel exposure may lead to 

kidney toxicity, allergic reactions, contact dermatitis, and 

even cancer [6]; and although zinc is generally less toxic, 

excessive intake can still be harmful, increasing the risk of 

cardiovascular disease, kidney stones, and other health 

issues [7].  

In addition to measuring the concentrations of Zn, Cu, and 

Ni in treated wastewater prior to environmental discharge 

using standard analytical techniques such as Atomic 

Absorption Spectroscopy (AAS) [8], Inductively Coupled 

Plasma Optical Emission Spectroscopy (ICP/OES) [9], and 

Inductively Coupled Plasma Mass Spectrometry (ICP/MS) 

[10], it is practically essential to perform rapid analysis of 

these metals at various stages of the production process. 

Real-time monitoring of their concentrations before 

discharge is crucial for timely and effective adjustments to 

the wastewater treatment process.  

A simple method such as UV-VIS molecular absorption 

spectroscopy, which offers suitable sensitivity, speed, 

accuracy, and the ability to simultaneously analyze all three 

metals using a single color-forming organic reagent, 

requires resolving the overlapping of absorption spectra 

[11]. To address this, chemometrics, machine learning and 

deep learning methods have been employed to optimize the 

advantages of traditional techniques such as UV-VIS and 

overcome their limitations.  

In spectrophotometry for heavy metal analysis, PAN (1-(2-

Pyridylazo)-2-naphthol) is a widely used chemical reagent 

due to its ability to form colored complexes with various 

transition and heavy metals such as Cu²⁺, Zn²⁺, Ni²⁺, Fe³⁺, 

Mn²⁺, Cd²⁺, Pb²⁺, and others. These complexes exhibit 

characteristic absorption spectra in the visible range 

(typically between 500–580 nm), enabling the use of UV-

Vis spectroscopy to determine metal concentrations [12]. 

However, when analyzing multiple metals simultaneously 

in a single sample (e.g., industrial wastewater), the 

absorption spectra of PAN-metal complexes often overlap, 

making it difficult to quantify individual metals using 

traditional spectroscopic methods. To overcome this 

challenge, chemometrics—a field that applies mathematical 

and statistical methods to chemical data—has been 

integrated with spectroscopy to allow for the simultaneous 

analysis of multiple metals in complex mixtures. Several 

studies have explored the use of PAN in micellar media for 

the spectrophotometric determination of heavy metals in 

combination with chemometric techniques. For instance, 

one study demonstrated the simultaneous determination of 

iron(II), nickel(II), and cobalt(II) by applying partial least 

squares (PLS) regression, both with and without a 

preprocessing step using direct orthogonal signal correction 

(DOSC) [13]. In another study, Cu(II), Co(II), and Ni(II) 

were simultaneously quantified using various mother 

wavelets from the continuous wavelet transform (CWT) 

family under optimized conditions for multi-component 

analysis. The method was validated through the analysis of 

synthetic ternary mixtures of Cu(II), Co(II), and Ni(II) ions 

and successfully applied to real sample matrices, including 

multivitamin tablets, tea, barley, spinach, chocolate, milk 

powder, soil, seawater, and tap water [14].  

 Machine learning (ML) and deep learning (DL) have 

become widely adopted in data-driven approaches for 
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processing outputs from traditional analytical methods. 

They represent a modern, rapid, and cost-effective research 

direction for the simultaneous determination of multiple 

components within a single mixture, while minimizing 

interference from the sample matrix or other analytes. By 

leveraging ML and DL techniques, it is feasible to perform 

simultaneous analysis without prior separation, utilizing the 

full visible (Vis) spectral range to achieve high analytical 

accuracy.  

This study aims to apply selected traditional ML models 

including Decision Tree (DT) and Random Forest (RF) and 

DL techniques using Multilayer Perceptron (MLP) and one-

dimensional Convolutional Neural Network (1D-CNN) for 

the simultaneous determination of zinc (Zn), copper (Cu), 

and nickel (Ni) in wastewater from an electroplating 

factory, based on visible (Vis) absorption spectra of their 

complexes with PAN in the presence of the non-ionic 

surfactant Tween X. The approach involves three main 

stages: first, the development of a mathematical model; 

second, validation of the model using simulated data with 

added random noise; and finally, application to 

experimental spectrophotometric data obtained from 

ternary metal ion mixtures in aqueous solutions.  

  

II. MATERIALS AND METHODS  

2.1. Instruments and software  

Spectroscopic measurements were conducted using the UH 

4150 UV-VIS-NIR spectrophotometer (Hitachi), with a 

glass cuvette having a path length (d) of 1 cm. pH 

measurements were performed using the HANNA 

Instrument 211 microprocessor pH meter. All weighing 

operations were carried out using the HR-200 analytical 

balance from AND (Japan), with an accuracy of 0.0001 g. 

All absorption spectra were recorded and exported using the 

UV-Win PC software into Microsoft Excel for statistical 

processing. Chemometric-supported spectroscopic 

measurements were performed using Python software.  

2.2. Materials and reagents  

Individual heavy metal standard solutions (Cu²⁺, Ni²⁺, and 

Zn²⁺) were diluted from standard solutions with a 

concentration of 1000 mg/L, sourced from Merck, 

Darmstadt, Germany. All chemicals used were of analytical 

purity, and double-distilled water was employed to prepare 

all solutions.  

The buffer solutions used for optimization studies included 

Ammonia buffer (pH 10), Sodium Phosphate buffer (pH 7), 

Acetate buffer (pH 5), and Britton-Robinson buffer (pH 3). 

These solutions were freshly prepared and adjusted using a 

pH meter. The 0.004 M PAN reagent solution was prepared 

by dissolving 0.1 g of PAN indicator in 100 mL of double-

distilled water. The resulting solution was stored in a dark, 

tightly sealed bottle and used within one week of 

preparation.  

2.3. Sample collection and sample preparation  

Wastewater samples from electroplating processes were 

collected from various sites in a factory located in Bac Ninh 

province, Vietnam. Immediately after collection, each 

sample was acidified by adding 3 mL of 55% concentrated 

nitric acid (HNO₃) per 1000 mL of sample to preserve metal 

ions and prevent precipitation. Before analysis, the sample 

was filtered to remove insoluble particulates by filter paper 

(Whatman). The filtrate was then neutralized to pH 7 and 

diluted to a final volume of 50 mL with deionized water 

before being analyzed by UV-Vis spectrophotometry.  

2.4. Analytical Procedure    

*Construction of calibration set and model development  

The machine learning model was developed using a UV-Vis 

spectral dataset comprising 500 spiked samples, derived 

from the wastewater matrix of an electroplating facility. 

These samples, originally characterized for their native 

concentrations of copper (Cu), zinc (Zn), and nickel (Ni), 

were spiked with known quantities of standard metal 

solutions to obtain specific target concentrations. The 

spiking design ensured a representative range of 

concentrations, with Cu ranging from 0.32 to 2.04 mg/L, Zn 

from 0 to 0.4 mg/L, and Ni from 0.165 to 0.975 mg/L.  

To facilitate model development, the dataset was 

partitioned into training and testing sets—C_train and 

A_train for the concentration and absorbance training data, 

and C_test and A_test for the corresponding test data—

using an 80:20 split ratio. These data matrices were then 

used as input for various machine learning algorithms 

implemented in Python. Each model was evaluated to 

identify the most suitable algorithm for accurate and robust 

prediction of metal concentrations based on the spectral 

data.  

 *Construction of validation set and assessment of model 

performance  

 A comprehensive statistical evaluation was conducted to 

assess the performance of the developed machine learning 

and deep learning models. The analytical accuracy of the 

models was characterized in terms of trueness and 

precision. The trueness was quantified by measuring the 

degree of agreement between the predicted concentrations 

generated by the models and the known reference 

concentrations in the training and testing datasets. This 

agreement was evaluated using the coefficient of 

determination (R2) between the results calculated by the 

model (𝑦𝑖′) and the actual contents of heavy metals in the 
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training or test set (𝑦𝑖), 𝑦𝑖 ∗ is the mean value of the 

observations 𝑦𝑖: 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖′)2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖∗)2𝑛
𝑖=1

                         (1); 

The precision was assessed through the root mean square 

error (RMSE), which reflects the dispersion of predicted 

values around the actual values.  

The formula of the root mean square error RMSE:   

            𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖−𝑦𝑖′)2𝑛
𝑖=1                     (2);            

•   𝑦𝑖 is the actual value at point 𝑖  ;   

•   𝑦𝑖′  is the predicted value at point 𝑖;   

•   n is the number of data points.   

 

III. RESULTS AND DISCUSSION  

3.1. Optimization of Experimental Conditions for Color 

Complex Formation  

To ensure the accuracy, sensitivity, and reproducibility of 

spectrophotometric determination of metal ions using PAN 

(1-(2-Pyridylazo)-2-naphthol), a series of experiments were 

conducted to optimize the key parameters affecting the 

formation of the colorimetric complexes. The following 

factors were systematically investigated:  

3.1.1. Wavelength Range Selection  

The absorption spectra of representative samples—

including standard solutions, real wastewater, and spiked 

wastewater samples—were recorded to identify the 

wavelength region with the most significant analytical 

signals. The selected wavelength range allowed for focused 

analysis, minimizing noise and reducing computational load 

during model development. The result obtained in figure 1 

show that the absorption spectra of the mixture of three 

standard substances exhibited overlapping maximum 

absorption peaks, with no distinct absorption maxima 

characteristic of each individual metal. Therefore, it is not 

possible to separately analyze each metal in the mixture 

using the UV-Vis method alone, necessitating the 

integration of multivariate algorithms to address the 

quantitative analysis of each metal in this mixture. 

Furthermore, this allowed the identification of a significant 

signal wavelength range of 500 nm to 620 nm. Experiments 

to construct matrices for the development of machine 

learning programs and algorithms for future software 

construction will focus solely on this wavelength range to 

save experimental time.  

  

 

Fig.1. Absorption spectra of standard samples, real samples, and spiked real samples after complexation with PAN 

 

3.1.2. Complexation Time Optimization  

The time-dependent behavior of absorbance intensity for 

each metal-PAN complex was studied to determine the 

optimal complexation time for stable and reproducible 

measurements. The absorbance of the PAN–Cu complex 

increased rapidly during the initial 10–100 seconds, 

followed by a slower rise from 100–200 seconds, and 

reached a plateau after approximately 250 seconds, 

indicating the formation of a stable complex. The PAN–Ni 

complex exhibited a rapid increase in absorbance within the 

first 200 seconds, after which the rate of change gradually 

slowed. Stability was achieved only after approximately 
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1500 seconds (~25 minutes), suggesting slower 

complexation kinetics compared to Cu. The PAN–Zn 

complex showed a rapid increase in absorbance initially, but 

the signal remained unstable even after 250 seconds, 

indicating more variable or slower kinetics in complex 

stabilization.  

Based on these observations, a resting time of 25 minutes 

(1500 seconds) was selected as the optimal complexation 

period for all three analytes. This duration ensured that all 

metal–PAN complexes, particularly the slower-stabilizing 

Ni–PAN and Zn–PAN complexes, had sufficient time to 

reach full complexation and stable absorbance. This 

standardized waiting period enhanced the reliability and 

consistency of spectrophotometric measurements across all 

samples (Figure 2).  

  

 

               PAN-Zn                                               PAN- Cu                                         PAN-Ni  

Fig.2. Effect of time on the formation of colored complexes 

 

3.1.3. Reagent Quantity Optimization  

The influence of reagent volume on the formation and 

stability of the metal–PAN complexes was systematically 

investigated. Standard solutions containing 0.5 ppm of each 

metal ion (Cu²⁺, Ni²⁺, Zn²⁺) were reacted with varying 

volumes of 0.004 M PAN in a final mixture volume of 10 

mL to determine the optimal reagent concentration.  

A consistent trend was observed across all analytes:  

As the volume of PAN reagent increased, the absorbance 

intensity of the resulting complexes also increased, 

indicating enhanced complex formation due to greater 

availability of the ligand. However, when the PAN volume 

exceeded 0.5 mL, the absorbance signals began to exhibit 

distortions and signs of spectral interference, likely due to 

excess reagent interacting with the spectrophotometric 

background or forming non-specific complexes.  

Based on these findings, 0.5 mL of 0.004 M PAN in a 10 

mL final volume was identified as the optimal reagent 

quantity for forming stable and measurable metal–PAN 

complexes. This volume ensured sufficient reagent 

availability for complete complexation without introducing 

absorbance interference or baseline instability (Figure 3).  

  

 

                         PAN-Zn                                    PAN-Cu                                         PAN-Ni  

Fig.3. Effect of reagent volume on the absorbance of complexes within the studied spectral range 
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 3.1.4. pH Optimization  

The effect of pH on the formation and stability of the metal–

PAN complexes was evaluated by preparing standard 

solutions of Cu²⁺, Ni²⁺, and Zn²⁺ (each at 0.5 ppm) and 

reacting them with 0.1% PAN in buffer solutions at 

different pH levels (pH 3, 5, 7, and 10). The results revealed 

that at pH 3 and pH 5, the absorbance signals were present 

but relatively low and less stable, likely due to incomplete 

complexation or protonation of functional groups on the 

PAN ligand that hinder metal binding.  

At pH 10, although complexation occurred, the absorbance 

was inconsistent, possibly due to hydrolysis or precipitation 

of metal ions at high alkalinity. At pH 7, the metal–PAN 

complexes demonstrated the highest absorbance intensity 

and excellent signal stability, indicating optimal complex 

formation under neutral conditions.  

Therefore, pH 7 was selected as the optimal pH condition 

for the spectrophotometric analysis, as it promotes 

maximum complex stability and absorbance response 

across all three target metals.  

 

                        PAN- Zn                              PAN- Cu                                  PAN- Ni  

Fig.4. Effect of pH on the complexation process of Cu²⁺, Ni²⁺, and Zn²⁺ with the PAN Reagent 

 

  

    

Fig.5: raw spectra containing raw data of 500 colored 

complex solutions (a) 
 

and 1st derivative spectra (b) 

 

3.2. Preprocessing before using ML and DL  

The preliminary analysis using machine learning (ML) and 

deep learning (DL) models on the unprocessed UV-Vis 

spectral data demonstrated limited predictive performance. 

Specifically, the models using raw spectra (figure 

5a) yielded relatively low accuracy, with coefficient of 

determination (R²) values ranging from 0.80 to 0.85, and 

poor precision, as indicated by root mean square error 

(RMSE) values exceeding 1. In addition, the computational 

time required for training and prediction was substantially 

prolonged due to the high dimensionality and noise inherent 

in the raw spectral data. To address these limitations, data 

preprocessing was deemed essential for noise reduction of 

interferences in matric of samples through spectral 

transformation methods such as first or second derivatives, 

which enhance signal quality by eliminating baseline drift 
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and smoothing fluctuations. Besides that, dimensionality 

reduction, for example using Principal Component Analysis 

(PCA), to extract the most informative features from the 

spectral data while minimizing redundancy and 

computational load.  

3.2.1. Derivative of entire spectra   

Noise reduction through spectral transformation methods 

such as first or second derivatives, which enhance signal 

quality by eliminating baseline drift and smoothing 

fluctuations.  

 

3.2.2. Reducing the Size of Input Data Using PCA  

A Given the high dimensionality of the original input data 

matrix (121 spectral variables across 500 samples), 

Principal Component Analysis (PCA) was employed as a 

dimensionality reduction technique to transform the dataset 

into a lower-dimensional space while preserving its 

essential information.  

PCA works by identifying new orthogonal variables—

principal components (PCs)—which represent directions of 

maximum variance in the data. These PCs are linear 

combinations of the original variables and are ranked 

according to the amount of variance they explain.  

 

Fig.6. Percentage of Variance Explained vs. Number of 

Principal Components (PCs) 

 

Analysis of the explained variance ratio (as illustrated in 

Figure 6) revealed that over 99% of the total variance is 

retained within the first five principal components. 

Therefore, the dataset was reduced to a 5-dimensional 

feature space, significantly simplifying the computational 

burden while maintaining the integrity of the original 

spectral information.  

This step is crucial for enhancing model performance by 

removing redundant and noisy variables, reducing 

overfitting, particularly in machine learning models trained 

on high-dimensional data, and decreasing computational 

time in both model training and prediction phases.  

  3.2. Selection of Suitable Algorithms and Evaluation of 

Models  

3.2.1. Machine learning model validation 

The Decision Tree model was optimized using a set of 

hyperparameters designed to balance model complexity 

with generalization performance. Specifically, a max_depth 

of 80 was selected to constrain the tree’s growth, thereby 

mitigating overfitting and enhancing model interpretability. 

The random_state was fixed at 24 to ensure reproducibility 

of results through consistent random number generation. 

The parameter min_samples_split was set to 10, defining 

the minimum number of samples required to split an 

internal node, which helps prevent the model from learning 

noise in the training data. Additionally, min_samples_leaf 

was set to 5 to ensure a minimum number of samples at each 

terminal node, promoting smoother decision boundaries and 

reducing model variance. This hyperparameter 

configuration was determined based on cross-validation 

performance to achieve an optimal balance between 

predictive accuracy and computational efficiency.  

The transformed dataset after using was then used to train a 

Random Forest regression model optimized with the 

following hyperparameters: 100 estimators to ensure robust 

aggregation and minimize variance, a maximum tree depth 

of 40 to control model complexity and prevent overfitting, 

a fixed random state of 12 for reproducibility, a minimum 

sample split of 2 to allow for fine-grained pattern learning, 

and a minimum sample per leaf of 1 to maximize flexibility 

in capturing subtle variations. This configuration was 

selected based on cross-validation outcomes to strike a 

balance between predictive accuracy, generalization ability, 

and computational performance.  

Among the evaluated models, PCA-DT demonstrated the 

weakest performance, with R² values of 0.269 (Zn), 0.3 

(Cu), and 0.276 (Ni), indicating that the model explains less 

than 30% of the data variance and fails to capture essential 

patterns. Correspondingly, RMSE values ranged from 0.359 

(Ni) to 0.471 (Zn), reflecting substantial prediction errors. 

The poor performance is attributed to PCA’s removal of 

low-variance components, which may contain nonlinear or 

compound-specific information critical for Decision 

Trees—an algorithm inherently limited in modeling 

complex relationships. Additionally, PCA can distribute 

noise across components, further degrading performance in 

noise-sensitive models like Decision Trees.  

Although the PCA-Random Forest (PCA-RF) model 

demonstrates improved performance over the PCA-

Decision Tree (PCA-DT)—with R² values reaching 

approximately 0.6 for Zn and Ni—it still shows limited 
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predictive ability for Cu, with an R² of only 0.2. This 

disparity suggests that while the ensemble structure of 

Random Forest enhances the model's ability to capture 

nonlinear relationships and reduce the effect of noise, the 

dimensionality reduction step using PCA may have 

eliminated essential features specific to Cu prediction. 

Consequently, despite outperforming PCA-DT, the PCA-

RF model remains constrained by the information loss 

introduced by PCA, particularly affecting the accurate 

quantification of certain analytes.  

3.2.2. Validation of Deep learning models 

 The PCA-MLP (Principal Component Analysis–

Multilayer Perceptron) model was constructed using a 

neural network architecture consisting of four layers with 5 

input neurons (corresponding to the number of retained 

principal components), followed by two hidden layers 

containing 50 and 25 neurons, respectively, and a single 

output neuron for regression prediction. The activation 

functions used were ReLU for the hidden layers to introduce 

nonlinearity and enable learning of complex relationships, 

and a linear activation function at the output layer to 

facilitate continuous output for regression tasks.  

The PCA-MLP model utilizes input data reduced via 

Principal Component Analysis (PCA) to enhance 

computational efficiency and reduce redundancy. The 

architecture comprises multiple fully connected hidden 

layers, where each neuron is linked to all neurons in 

adjacent layers. Nonlinear activation functions, such as 

ReLU, are applied within these layers to enable the model 

to learn complex nonlinear relationships in the spectral data. 

While the model achieves strong predictive performance for 

Zn (R² = 0.855, RMSE = 0.209), its effectiveness is notably 

lower for Cu and Ni, indicating element-specific 

limitations. Moreover, the model's complexity requires 

extensive hyperparameter tuning and longer training times, 

reflecting higher computational demands.  

The 1D-CNN (One-Dimensional Convolutional Neural 

Network) model was designed to process the full spectral 

data (121 input features) using a sequential convolutional 

architecture. The network includes four Conv1D layers with 

increasing filter sizes: 32, 64, 128, and 100, all utilizing a 

kernel size of 3 to capture local spectral patterns. ReLU was 

employed as the activation function throughout the 

convolutional layers to introduce nonlinearity. A final dense 

output layer with a single neuron was used for regression 

prediction. This architecture enables the model to learn 

hierarchical features from the spectral data while 

maintaining robustness and flexibility in capturing complex 

relationships.  

Table 1. Statistical parameters obtained by the Machine learning and deep learning method 

 

 

The 1D-CNN model demonstrates superior predictive 

performance, with R² values ranging from 0.884 to 0.97 and 

RMSE values between 0.027 and 0.036, owing to its 

capacity to extract complex spatial and nonlinear features 

from spectroscopic data. Unlike PCA-based models, 1D-

CNN operates directly on the full spectral input, preserving 

all intrinsic patterns and avoiding potential information loss 

associated with dimensionality reduction. Its convolutional 

and pooling layers enable effective automatic feature 

extraction and noise suppression by emphasizing local 

signal patterns, making it highly robust in complex 

matrices. This advantage is particularly evident in the 

accurate prediction of Cu, where earlier models 

underperformed.  

It can be said that Models incorporating PCA—such as 

PCA-DT, PCA-RF, and PCA-MLP—are notably impacted 

by the loss of critical spectral features during 

dimensionality reduction, particularly for analytes like Cu 

that exhibit weak or overlapping absorption bands. Among 

them, PCA-DT performs the worst, with R² values around 

0.27–0.3, highlighting its limited capacity to model 

nonlinear relationships in noisy environments. Although 

PCA-RF and PCA-MLP show marginal improvements due 
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to ensemble learning and nonlinear activation functions, 

they still fall short in achieving reliable predictive 

accuracy.  

Conversely, the 1D-CNN model not only delivers superior 

accuracy but also inherently reduces data dimensionality via 

pooling layers, eliminating the need for external 

preprocessing techniques like PCA. This end-to-end 

learning capability allows 1D-CNN to retain and extract 

essential spatial and nonlinear features from UV-Vis 

spectra, even in complex sample matrices. Its robustness to 

noise and overlapping signals makes it particularly suitable 

for real-world applications. As a result, integrating UV-Vis 

spectroscopy with 1D-CNN offers a powerful, efficient, and 

scalable solution for simultaneous multi-metal 

quantification in environmental monitoring and industrial 

wastewater analysis.  

 3.3 Analysis of real samples and comparison with AAS 

techniques  

To evaluate the effectiveness and accuracy of the newly 

developed rapid analysis program, the concentrations of Zn, 

Cu, and Ni were determined in 5 samples with arbitrary 

concentrations within the range the program was trained on. 

The obtained results were then compared with those 

obtained using the AAS method (Table 2).  

Table 2. Compare the results obtained by UV/CNN method with  AAS method 

  Zn 2+  Cu 2+  Ni 2+  

 No  
AAS 

method  

UV/CNN 

method  
% error  

AAS 

method  

UV/CNN 

method  
% error  

AAS 

method  

UV/CNN 

method  
% error  

1  0,035  0,034  2,29  0,318  0,321  1,12  0,165  0,176  6,67  

2  0,05  0,054  7,40  0,660  0,691  4,67  0,320  0,341  6,56  

3  0,071  0,076  7,04  0,790  0,813  2,87  0,051  0,055  7,84  

4  0,73  0,754  3,29  1,040  1,111  6,87  0,420  0,440  4,76  

5  0,12  0,110  8,33  0,379  0,351  7,40  0,850  0,808  4,92  

R 2   99.9   99.7    99.6  

 

Based on the comparison of Zn, Cu, and Ni concentrations 

obtained from the AAS method and the UV/CNN method 

under investigation, it is observed that the correlation 

between the two methods is excellent, with R² > 99. 

Additionally, the deviation between the results from the 

UV/CNN method and the reference AAS method is 

consistently below 10%. These findings suggest that the 

UV/CNN method is a promising approach for the rapid, 

easy, and accurate determination of metal concentrations in 

wastewater from electroplating processes.  

  

IV.  CONCLUSION   

 This study demonstrates the viability of integrating 

ultraviolet-visible (UV-VIS) absorption spectroscopy with 

machine learning (ML) and deep learning (DL) algorithms 

for the simultaneous quantification of heavy metals—

namely zinc (Zn), copper (Cu), and nickel (Ni)—in complex 

wastewater matrices. Conventional UV-VIS analytical 

approaches are often constrained by spectral overlap and 

matrix interferences arising from coexisting contaminant 

ions, which can significantly hinder the accuracy and 

reliability of quantification. By leveraging data-driven ML 

techniques, it is possible to extract latent information from 

overlapping spectral profiles, thereby enhancing the 

robustness and precision of the analytical process. Among 

the models evaluated, the one-dimensional convolutional 

neural network (1D-CNN) exhibited superior performance, 

attributable to its capacity to autonomously capture 

nonlinear and spatial features directly from raw spectral 

data without requiring preliminary dimensionality reduction 

procedures such as principal component analysis (PCA). 

These findings affirm the feasibility and high potential of 

ML-based approaches—particularly deep learning models 

like 1D-CNN—for application in environmental analytical 

chemistry. Future research should focus on validating the 

generalizability of the proposed model across diverse 

sample matrices and under varying physicochemical 

conditions (e.g., natural environmental samples, elevated 

contaminant concentrations, fluctuations in pH and 

temperature). Moreover, the development of user-friendly 

software platforms to integrate UV-VIS spectral data 

processing with ML algorithms represents a promising 

avenue for facilitating rapid, cost-effective, and scalable 

deployment of this technology in real-world environmental 

monitoring.  
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